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Abstract 

The boundary-value Green function technique has been 
used with the Takagi-Taupin equations to explore 
analytically the diffraction in a perfect rectangular t x l 
crystal for a symmetrical coplanar scattering mode. The 
important contribution is the development of the 
integration structure over the entrance and exit surfaces 
of the crystal. A single parameter, ( =  (t/l)tanOoh, 
maps the different crystals and the scattering geome- 
tries. In the limits ( ~  0 and ( ~  o~, the well known 
functions for the primary extinction factors for perfect 
semi-infinite crystals in the case of Laue and Bragg 
scattering are retrieved. Numerical integrations extend 
the range of applicability of the method. Both ordinary 
absorption and generalized extinction, i.e. the joint 
effect on the kinematical integrated power due to 
multiple scattering and resonant scattering, are 
addressed. Germanium is used as a model system for 
some of the calculations. 

1. Introduction 

One of the main problems in dealing with dynamical 
diffraction in perfect crystals is to take the finite crystal 
shape into consideration. Approaches based on the 
fundamental theory, cf. Zachariasen (1945) or Pinsker 
(1978), are in principle only valid for crystals having an 
infinite laterally extended diffraction plane. In a 
previous paper (Thorkildsen & Larsen, 1998), hereafter 
denoted TL, we have shown that the Takagi-Taupin 
equations (Takagi, 1962, 1969; Taupin, 1964) combined 
with the boundary-value Green function technique 
comprise a powerful tool to analytically handle the 
calculations of dynamical scattering in perfect spherical 
and cylindrical crystals. 

In this paper, we use the same concepts to analyse 
dynamical scattering in a perfect crystal with a rectan- 
gular-shaped diffraction plane. Uragami (1969, 1970, 
1971), in his work on Pendell6sung fringes in finite 
crystals, introduces the division of the crystal into 
regions and gives closed expressions for the diffracted 
fields for both Laue and Bragg scattering. His results 

S° 

are used for numerical calculations in this work. Saka 
et al. (1972a,b, 1973), cf. Kato (Az~iroff et al., 1974), 
analysed and classified the wave fields for different 
geometrical conditions in polyhedral crystals. Later, 
Olekhnovich & Olekhnovich (1978) used the ideas of 
Uragami to numerically calculate the primary extinc- 
tion factor in a square-cross-section parallelepiped 
crystal for a limited range of the Bragg angle. Becker 
(1977) and Becker & Dunstetter (1984) made important 
contributions advocating the point-source formalism 
and the concept of an extended volume to handle 
scattering in finite crystals. A renewed interest in the 
problem is due to the development of Bragg-Fresnel 
zone plates (Snigirev & Suvorov, 1993) in which 
rectangular edges and surface profiling of silicon single 
crystals have been used for the focusing of a periodic 
object. 

In the present work, we treat the case of symmetrical 
coplanar scattering. The main development is a general 
integration structure for the entrance and exit surfaces 
which makes it possible to handle any t x l cross 
section. The general theoretical foundations are given 
in §2. In §3, we apply the formalism to calculate 
extinction and absorption factors. Both a symbolic 
calculation based on a series-expansion approach and a 
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Fig. 1. Crystal dimensions and face labels. Entrance surfaces are A and 
B, exit surfaces A and D. The angle between s o and s h is 20oh. 
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numerical calculation using Uragami's results are 
performed. 

2. Theory 

2.1. General 

We seek the integrated diffracted power, 7~h, from a 
perfect t x l crystal when it is subject to an incoming 
plane wave with wave vector in the direction of s o . The 
direction of the diffracted wave is s h. Fig. 1 shows the 
actual geometry. 

In TL, it was shown that the integrated diffracted 
power can be expressed by 

7:'h = T'(hO)(1/vsin2Ooh) ~ Y~ f dz f S h • dM 
r m=m'(r) M(m) 

× f So" dSlGh(Ao, Ahlm; r)l 2 
s(M) 

× exp[--U(Ao + Ah)]. (1) 

p(0) 
h is the kinematical integrated power, v is the volume 

of the crystal and 0oh is the Bragg angle. The set of 
functions {iXhoGh} are the boundary-value Green 
functions for the wave fieldt b h. They are the solutions 
of the Takagi-Taupin equations for two beams written 
in the representation 

ODo/OS o = iKohDh (2) 

~bh/~sh = iXhobo (3) 

with the boundary condition 

O o(S ) = (~(Sh). (4) 

S is a source point on the entrance surface and 
denotes Dirac's 8 function. 

Separate functions G h exist in each region m, which 
are bounded by the characteristic lines associated with 
the equations, cf. Sommerfeld (1949) and Sneddon 
(1957). These regions originate as a consequence of the 
limits imposed on the wave propagation by the crystal 
boundaries. It is usual to differentiate between a Laue 
( r =  L) and a Bragg ( r =  B) family of regions, 
depending on the position of S on the entrance surface, 
cf. §2.2. The  coordinates (Ao, Ah) represent the differ- 
ences [so(M ) - so(S), Sh(M ) -- Sh(S)] , where M is a point 
on the exit surface. Fig. 2 shows two point sources, with 
associated local coordinate systems, located on the A 
and B parts of the entrance surface, respectively. A 
global coordinate system, (r 0, rl), which will serve as a 
reference for the surface integrations, is also shown. 
The relations that exist between the various coordinate 
systems are explored in Appendix A. 

~f Consult TL Section 2.1 for a rigorous definition of the field 
functions b o and D h. 

It is convenient to treat the diffracted field at the exit 
as a superposition of four discrete scattering processes 
depending on the possible combinations of the posi- 
tions of S and M on the crystal surfaces. We denote the 
processes as A - A ,  A - D ,  B - A  and B - D  scattering, cf. 
Fig. 1. The integration fs(~)So, dS sums up the contri- 
butions from all sources S which give rise to a diffracted 
wave at the exit point M. In the same way, the inte- 
gration fM(m)Sh" dM sums the contributions from all 
exit points. The integration limits depend upon a 
geometrical factor, (, which is defined in §2.2. Each 
region m, at the exit, is treated separately. The vectors 
s o and s h define a diffraction plane at a height z along 
the vertical extension of the crystal, m' is the subset of 
regions that contributes at the exit. 

In equation (1),/x is the linear absorption coefficient, 
thus the effect of absorption along the optical routes 
caused by the multiple-scattering events is included in 
the calculations. Furthermore, as will become evident, 
the functions G h will depend upon the product of 
structure factors, FhF_h, sincet 

tChoKoh = (reXC/Vc)2 FhF_h . (5) 

In the general case when resonant scattering is 
included, this parameter  will become a complex quan- 
tity: 

ghoKoh = IKhogohl exp(i(1)) (6) 

¢ = ~Ooh + ~Oho. (7) 

qgpq is the single phase associated with r.pq. In this work, 
we define the extinction length by 

Ao h def 1/(]KhoKoh])l/2. (8) 

Owing to the variation of the anomalous scattering 
functions f '  and f "  with the wavelength, we will have 
F h • Fh() 0 and ~ = O(X). 

I" All symbols have their standard interpretation: re: classical electron 
radius, X: wavelength, C: polarization factor, Vc: unit-cell volume, Fh: 
structure factor. 

o G s 

ro s &' ao 

So So 

Fig. 2. Actual coordinate systems used. 
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2.2. Region structure 

The region structure associated with a source point 
on the A surface is shown in Fig. 3. The corresponding 
region structure with source point on B is shown in Fig. 
4. The number of regions present at the exit is linked to 
the value of the parameter ~" defined by: 

( -- (t/l) tan Ooh. (9) 

This parameter thus comprises both the crystal dimen- 
sion, (t, l), and the scattering condition, Ooh. Figs. 5 and 6 
indicate the build up of contributions with increasing 
value of (. Depending on the position of the source 
point, different regions are realised at a given exit point 
and we have to add the field amplitudes. This is sorted 
out through the integration set-up, cf. §2.5. For a 
pyramidal or bipyramidal shaped crystal, we have that 

= ~(z). 
It should be noted that the topology of the region 

structures presented here is identical to that of a crystal 
with a circular diffraction plane, cf. TL. 

2.3. Calculation procedure 

To simplify the implementation in the mathematical 
software system Mathemat ica , t  the analysis will be 
carried out using dimensionless coordinates. All 
lengths:~ are scaled to the characteristic length ~ defined 

by 

e = (l/2 sin 0oh ). (10) 

In general, ~ = e(z) but here we will only consider 
parallelepiped shaped crystals, i.e. crystals with a fixed 
cross section in the vertical direction. 

The Takagi-Taupin equations become: 

Obo/~S o = iKoheb h (11) 

O b h / O S  h - -  i K h o e b  o (12) 

and we express the integrated power by the equationt 

7~h = T'~h°) (1/2() E ~ f dy f 
S m=m'((;S) M((;m,S) S(y,(;m,S) 

× IGh(A o, Ahlm; rs)[ 2 exp[--#0(A o + Ah) ]. (13) 

$ counts the actual surface combinations ( A - A ,  A - D ,  
B - A ,  B - D ) .  Furthermore, we have rA_ a - - r t _  o = B 
and rn_ A - - r n _  o = L, labelling the Bragg and Laue 
families of Green functions. The expressions for A o and 
Ah,  using the new variables x and y, are given in Table 

t The relations between the x and y coordinates and the positions of 
source and exit points measured in (r 0, r 1) are given in Appendix A. 

r,(S) 

t Mathematica is a trademark of Wolfram Research Inc., Champaign, 
IL 61820, USA. 
~/Including parameters a and b introduced in Figs. 3 and 4. 

S 

(s,,sD 

(a,a) 

(s~,s~) 

(2a,2a) 

r,~S) 

i ..~...,.1)............ .~ .... 

..... ~ f  ' ~  .... 
~ . n . . . ~ . . . .  . . . . . . . .  ..1 ..... 

(a,O) 

(s,,So-a) 

(2a, a) 

(So,So-a) 

Fig. 3. The Bragg family of regions, or regions with source S on the A 
surface. • represent points (s o, Sh) within the crystal, a = / / s i n  Ooh. 

(s, 

(a a-b)) 

Fig. 4. The Laue family of regions, or regions with source S on the 
surface B. a = I/sinOoh and b = rl(S)/sinOoh. 
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1. In this table, we have also included the actual 
expressions for c de___f b / e .  T h e  definitions of x and y are 
chosen to simplify the mathematical treatment, espe- 
cially the surface integrations and the implementation 
in Mathemat i ca .  

/,t 0, a dimensionless absorption coefficient, is defined 
by: 

def 
/z o = / z £ .  (14) 

To obtain analytical expressions or numerical values for 
?h,  we have to find: 

(a) the families of functions: Gh(So, shim; r); 
(b) the surface integration set-up: 

f~(¢;,,,,s) dy fs(y,~;,,,,s),:Ix. 

2.4. Field  so lu t ions  

The extinction factor is usually expressed as a series 
expansion in the squared ratio of characteristic length 
to extinction length. This leads us to express the 
boundary-value Green functions as series and search 

Table 1. Coord ina te s  Ao  a n d  A h f o r  an exit  p o i n t  M 
relative to a source  p o i n t  S, expressed  in d imens ion le s s  

coord ina tes  x a n d  y with c --  b / £  

S Ao Ah C 

A-A x x - 
A-D x+2y x 
B-A 2y-x  x 2x-2y 
B-D 2 ( - x  x 2x+2y-2( 

for the expansion coefficients. Such an approach will be 
outlined in the first part of this section. The results are 
suitable for symbolically calculating the various terms in 
a series for the generalized extinction factor for a 
perfect crystal. Physically, the terms in the series 
represent multiple scattering-rescattering events. In the 
second part, it is pointed out that the series for G h c a n  

be given in closed forms. Here we directly apply the 
results of Uragami (1969, 1970, 1971) adopted to the 
notation used in this paper. These functions are suitable 
for numerical integrations. 

~=o 

10 

Q [ 2 p + I ; B ]  G, [3p+2;L] 

I 
: i 

i : 

I: I " 

q=O 

[ 
i 
i 

I 
I 

: i 

I 
i 

i 

I 
i 

: ; : I 

p = O  1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10 

1=1 

Fig. 5. Contributions to the field at the exit surface A. 

. . . . . . . . . . . .  I = 2  ................. I=3 
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2.4.1. Series expansions for the family o f  Green 
.functions. The boundary-value Green functions are 
formally expressed by the series: 

oo 

Do(so, Sh) = (1/£) y~.(--u)"G(o")(So, Sh) (15) 
n=O 

oo 

b h  (So, Sh) = igho Gh (So, Sh) = iXho Y~  (-u)" G(h '0 (So, Sh), 
n----0 

(16) 

where the expansion parameter u is given by 

U = I(ohKho e2. (17) 

Using equations (11) and (12), we obtain the recurrence 
relations 

OGCo")(So, Sh)/Os o = G~h"-l)(So, Sh) n >_ 1 (18) 

OG(n)(so, Sh)/OSh --" G(n)(So, Sh) n > 1 (19) 

together with 

aGCo°)(So, sh)l~so = 0 

Oc(,,°~(So, sh)lOsh = C~(So, Sh). 

Applying the boundary condition associated with the 
point source, equation (4), we find the following 
conditions for those sections of the crystal where first- 
order scattering is present: 

G(o°)(So, Sh) = 8(S h) (20) 

GthO)(So, S h) = O(Sh). (21) 

® denotes the Heaviside function. We then obtain the 
integral recurrence relations and boundary conditions, 
from which it becomes possible to calculate the series- 
expansion coefficients: 

G~o")(So, shim; r) 
$o 

(n) .b  t , . - . ( n - l ) /  t Im; r) = G  O (%,Shlmb;r)+ f dSoOh tSo, Sh 

s~o 

(,,) ob r(":r)r:O'-l)t-' shim; r) (22) = G O (%, Shlmb; r) d- "--oh "-'h 0o, 

GCh")(So, shim; r) 
s h 

= G~")(So, Sbhlmb; r) + f ds'h G(o")(So, S'hlm; r) 

- -  r~m:r)~")t~ ' lm;  r). (23) -- G~h")(So, sblmb; r) + "ho "-'o ,°o, Sh 

~=o 
G.[2p+I;B] G,[2p+2;BI G[3p+I;L] G,[3p+2;L] G~[3p+3;L] 

o=0 

q=O 
o=1 

I 
1 

o=0 

o=1 

o=0 

o=1 

o=0 

offil 

I o=O 
offil 

' ,1 

p=O 1 2 0 1 0 1 2 3 4 5 0 1 2 3  4 5 0 12  3 4 5 

I=l 

Fig. 6. Contributions to the field at the exit surface D. 

. . . . . . . . . . . .  1=2 1=3 
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G!°)(So, shim; r) -- 0 

G~h°)(So, S~lmb; r) = 0 

at a general  interior point 
(sh ¢ 0) 
on the rear surface C (no 
diffracted wave emitted) 

G~hO)(So, Shll; B) = 1 

G~°)(So, shlm; B)= 0 m > 2 

a~°)(So, Shll; L ) =  1 

G~°)(So, Sh[2; L) -- 1 

G~h°)(So, Sh Im; L) --- 0 m > 3. 

The boundary conditions correspond to those used by 
b and sh b are coordinates for the Uragami (1971). s o 

boundary  points for the region in question, m b repre- 
sents a neighbouring region or the crystal boundary. In 
general, the functions G~o ") and G(h '~) are continuous 
across a region border  for any order n. The integral 
operators Eho and Eoh, implicitly defined in equations 
(22) and (23), are given in Tables 2 and 3. 

By applying the recurrence relations, equations (22) 
and (23), it is possible to analytically calculate the 
coefficients G~ )(s o, shim; r) in principle to any order n. 

2.4.2. Closed expressions for  the fields. Using the 
work of Uragami (1971), we find recurrence relations 
for the boundary-value Green  functions expressed in 
closed forms. The results are:t  

Laue family: 

G h(s o, s h [3p + 1" L) 

= Gh(S o, Shl3 p -- 2; I_) + W(So, Shl3 p -- 1" I )  

+ W(So, Sh 13p; I_) (24) 

G h(s o, S h 13p + 2; I_) 

-- Gh(S o, Shl3 p + 1" l )  + W(So, Shl3 p + 2; [_) (25) 

G h (s o, s h 13p -+- 3 ; / )  

= Gh(S o, Shl3 p + 1; I_) + W(So, Shl3 p + 3; I..); (26) 

Bragg family: 

Gh(S o, Shl2 p + 1; B) 

= Gh(S o, Shl2p; B) + W(So, Sh[2 p + 1" B) (27) 

Gh(So, Sh 12p + 2; B) 

= Gh(S o, Sh]2 p + 1; B) + W(So, Shl2 p + 2; B); (28) 

where we have 

Gh(S o, Shll; L) - JO[2(USoSh) 1/2] (29) 

Gh(So, Shll; B) = Jo[2(USoSh) 1/2] + (Sh/So)Jz[2(USoSh)I/2]. 

(30) 

In the Laue case, it is convenient  to handle regions with 
p even and p odd separately. Thus, the region counters 

t J, is the Bessel function of order n. 

Table 2. Defining integral operators for  the Bragg family,  
r = B ; p = O ,  1 . . . .  

Region r~": B) r~m: B~ 
~ oh  ~ h o  

m = 2p+l j]~o ds, ° JZp ds~, 

m = 2p+2 f2~+1, ds" ffo~ 2 ds~ 

Table 3. Defining integral operators for  the Laue  family,  
r = / ;  p = 0, 1 . . . .  and c = b/g. 

Region p F(m;I.) /.,(re;L) 
~ o h  ~ h o  

m = 3p+l Odd f~°+l)_ c ds'o f~-l)+c ds~, 
Even £o ds" £h ds~ 

m = 3p+2 Odd fj.~o_~ ds~, J;+l ds~ 
Even j~o_~ ds, ° j~_~ ds~, 

m = 3p+3 Odd £+1 ds~, ~-t2-c) ds~, 
So Even f~+2)-c ds'o -~h £o-~2-~ ~'~ 

will be of the type 6 p + i  with p = 0 , 1  . . . .  and 
i = 1 . . . . .  6. The actual functions W(So, shlm; l )  then 
become: 

w(s o, Shl6 p + 2; L) 

= (--1)P{[sh -- (2p + C)]/[S o + (2p + c)]} p+I 

× Jzp+2(Z{u[So + (2p + c)][s h - (2p + c)]} 1/2) 

w(s o, Shl6p + 3; I..) 

= ( - 1 )  p+1 ({s o - [(2p + 2) - c]} 

× {s h + [(2p + 2) - c]}-1) p 

× J2p[2(u{s o - [(2p + 2) - c]} 

× {s h + [ ( 2 p  + 2 ) - c ] } )  1/2] 

W(So, Sh 16p + 5; I_) 

= (--1)P+I{[sh -- (2p + 2)]~Is o + (2p + 2)]} p+I 

x Jzp+z(2tU[So + (2p + 2)]Is h - (2p + 2)]} 1/2) 

W(S o, Sh]6 p + 6; 1..) 

= (--1)P+l{[So -- (2p + 2)]/[S h + (2p -{- 2)]} p+I 

× Jzp+z(Ztu[s o -- (2p + 2)]Is h + (2p + 2)]}1/2). 

In the Bragg case, we have: 

w(s o, Shl2P + 1; B) 

-- (--1)P[(Sh -- 2p)/(S o + 2p)] p+I 

× Jzp+z{2[u(s o + 2p)(s h -- 2p)] 1/2 } 

+ (--a)P[(Sh -- 2p)/(S o + 2p)] p 

× Jzp{Z[u(s o + 2p)(Sh -- 2p)] 1/2} 

(31) 

(32) 

(33) 

(34) 

(35) 
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Table 4. Relations between exit and entrance surface 
integration; A - A  scattering 

m C I Y x 

2p+l (2p, 2p+2) 1 (2p, () (2p, y) 
(2p+2, c~) 2a (2p, 2p+2) (2p, y) 

2b (2p+2, C) (2p, 2p+2) 

Table 5. Relations between exit and entrance surface 

m 

2p+l 

2p+2 

integration; A - D  scattering 

C I y x 

(2p, 2p+l) 1 (0, (--2p) (2p, C--Y) 
(2p+1, 2p+2) 2a (0, 2p+2--() (2p, g--Y) 

2b (2p+2- c, 1) (2p, 2p+2-2y) 
(2p+2, oo) 3 (0, 1) (2p, 2p+2-2y) 
(2p+1, 2p+2) 1 (2p+2-C, 1) (2p+2-2y,(-y) 
(2p+2, 2p+3) 2a (0, C-2p-2) (2p+2-2y, 2p+2) 

2b (C-2p-2, 1) (2p+2-2y, C-Y) 
(2p+3, oo) 3 (0, 1) (2p+2-2y, 2p+2) 

Table 6. Relations between exit and entrance surface 
integration; B - A  scattering 

m C I y x 

3p+2 (p, p+l) 1 (P, () (p+l, y+1) 
p odd (p+l, p+2) 2a (p, p+l) (p+l, y+1) 

2b (p+l, C) (2y-p- l ,  y+1) 
(p+2, oo) 3a (p, p+l) (p+l, y+l) 

3b (p+l, p+2) (2y-p- l ,  y+1) 
3p+2 (p, p+l) 1 (P, C) (y, 2y-p) 

p even (p+l, p+2) 2a (39, p+l) (y, 2y-p) 
2b (p+l, C) (y, p+2) 

(p+2, oo) 3a (p, p+l) (y, 2y-p) 
3b (p+l,p+2) (y,p+2) 

W(So, Sh 12p + 2; B) 

= (-ly°+11[So - (2p + 2)]/[s h + (2p + 2)]} p+I 

x Jze+z(Z{u[s  o - (2p + 2)][Sh + (2p + 2)]} 1/2) 

+ (--1)P+l{[so - -  (2p + 2)]/[s h + (2p + 2)]} p 

x Jzp(Z{u[So - (2p + 2)][Sh + (2p + 2)]}1/2). (36) 

2.5. Surface integrations 

The set-up for the surface integrations is summarized 
in Tables 4 to 7. The pa ramete r  I is used as a reference 
for a given integration. It is introduced to simplify the 
reading of the tables in conjunction with Figs. 5 and 6, 
which show the contributions to the diffracted field at 
the exit surfaces. The Gh(S o, shim = m'; r) functions are 
not  defined outside the limits in ( given in the tables. L e. 
the regions m'  are only realised at the exit for specific 
values of the pa ramete r  (. The integration set-up 
depends on the value of ( or, explicitly, the related 
integer (Int[ ]) values q and o, defined by 

q = Int[(] (37) 

o = Int[2 x ( ( -  q)]. (38) 

The subdivision of the integer intervals (q) in (, desig- 
nated  by o (o = 0 v 1), natural ly appears  f rom the 
analysis that gives the integration structure for the B - D  
scattering terms, cf. §3.1. 

Independent  of the values of q and o, the surface 
integrations should give the result 

~ f dy f dx = 2([1 + ((/4)]. (39) 
S m = m ' ( ( ; S )  M(( ;m,S)  S(y , ( ;m,S)  

This follows f rom the analysis given by Becker  (1977), 
who showed that  the surface integrations always can be 
t ransformed to a 'volume'  integration for an extended 
volume v', cf. Fig. 7. 

2.6. Generalized extinction factor and absorption factor 

Having the series expansion for Gh, we can construct 

(30 

I G h ( A o ,  Ahlm; rs)l 2 = ~ , ( - -1 ) " lu l " I (h" ) (Ao ,  Ah; elm; r s) 
n = 0  

(40) 

with 

Ih(")(Ao, Ah; e l m ;  rs) 

= ~ G(hk)(Ao, Ahlm; rs)G~"-k)(Ao, Ahlm; rs) 
k----0 

x exp[i(2k - n )~] .  

By construction, the coefficients {G(h k)} are real  func- 
tions. 

It is found convenient]- to express the generalized 
extinction factor, y, for the perfect  t x l crystal formally 
by 

y = (Ph/~'~ °~) = y(( , /z0,  ¢ ,  ~) 
(X) 

---~ Y~(--1)nf~nq)((,/Z 0, (I))~ n (41) 
n----O 

t We have here already adopted one of the results from the analysis. 
The coefficients ~q) do not depend on the parameter o. In general, the 
number of parameters included in the definition of ~q) will depend on 
the actual problem that is considered. 

Fig. 7. Extended volume v' for a crystal in the shape of a rectangular 
parallelepiped, v' = 2((1 + C/w)l 2 sin 20oh. 
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Table 7. Relations between exit 

m ( I 
3p+l (p, p+½) la 

p odd lb 
lc 
2a 
2b 
2c 
la 
lb 
lc 
2a 
2b 
2c 
1 
2 
1 
2 
1 
2 
1 
2 

(p+½, P+l) 

3p+l (p, p+~) 
p even 

(p+½,P+a) 

3p+2 (p,p+l) 
p odd (p+l,p+2) 

3p+2 (p,p+l) 
p even (p+l, p+2) 

3p+3 (p,p+l) 
p odd (p+l, p+2) 

3p+3 (p,p+l) 
p even (p+l, p+2) 

and entrance surface integration; B -D scattering 

y X 

(0, ( -p)  (p+l-2y, p+l) 
(¢-p, p+1-0  (p+l-2y, 2(-2y-p+l) 
(p+1-¢', 1) (2(-p-1,  2¢-2y-p+1) 
(0, p+l - ( )  (p+l-2y, p+l) 
(p+l-(,  ( -p)  (2(--p-l,p+l) 
((-p, 1) (2 ( -p- l ,  2(-2y-p+l)  
(0, ( -p)  (2(-2y-p, 2(-p) 
((--p, p+l - ( )  (p, 2(--p) 
(p+l-(, 1) (p, p+E-2y) 
(0, p+l--() (2(--2y--p, 2(-p) 
(p+l-(,  ¢-p) (2(--2y--p, p+2-2y) 
(¢--p, 1) (p, p+2-2y) 
(0, ¢'-p) (p+l, ¢'-y+1) 
(0, p+2--() (2(--p-l, (-y+l)  
(0, ( -p)  ((-y, 2(--2y-p) 
(0, p+2-() ((-y, p+2-2y) 
(p+l-(,  1) (f-y, 2(--p-l) 
((--p-l ,  1) (¢-y, p+l) 
(p+l-(,  1) (p+2--2y, (-y+l) 
((--p-l ,  1) (2¢--2y--p, (-y+l)  

with expansion coefficient 

J~nq)(( , /'/'0, t~) 

= (1/2((2"+1)) E Z f dy f dx 
S m=mPn((;S) M((;m,S) S((;y;m.S) 

X Ih~n)(Ao, Ah; ~ lm;  r s )exp[- -#0(Ao + Ah)] (42) 

and expansion parameter :  

: lul x (2 : ( t /2Ao  h coSOoh)2. (43) 

As indicated in equat ion (42), the number  of regions 
that should be included in the calculation of the 
expansion coefficients depends on the expansion order  
n. n should be greater  or equal to nmin(m) before the 
region m contributes. The physical reason is that, for 
the wavefield to reach that part icular  region, it has to 
experience a certain number  of scat ter ing-rescat ter ing 
events. It is found that 

nmin(m ) -- m/2 
nmin(m ) : (m + 3)/6 

Bragg family 

Laue family, 

where integer division is understood.  
It now becomes straightforward to calculate the 

ordinary absorption factor A for the t × 1 crystal in the 
symmetrical  scattering case. In the kinematical  limit, i.e. 
when n -- 0, we have no multiple scattering and 

A = j~oq)(~,/Zo). 

The regions m = m~((; $) that will contribute have a 
zeroth-order  term in their field expansion and for those 

regions 

6 o (Ao, , . tm0( (, $); rs) = 1. (44) 

We write: 

Z = A ( ( , / % )  = (1 /2( )  y~ ~ f dy f dx 
s m----rn0((;S ) M((;m,S) S((;y;m,S) 

x exp[- /xo(A o + Ah) ]. (45) 

3. Results 

3.1. Series expansion - asymptotic properties 

By studying the contributions to the diffracted field 
originating from different regions within the crystal, we 
find that an asymptotic value of the series-expansion 
coefficients is reached,  when the pure Laue (B-D) 
contribution equals zero. In terms of scat ter ing-  
rescattering events, each region in the two families can 
be characterized by a minimum number  of events 
necessary to reach the region. Since the expansion 
order  n corresponds to the number  of such events, we 
have that the asymptotic level occurs when an increase 
of ( (or equivalently q) gives no additional field 
contributions to that particular order,  cf. §2.6. The 
asymptotic expression depends only upon the A - A ,  
B - A  and A - D  scattering processes. This type of field 
regime should occur when 

q ~ q,, = 2 ( n / 2 ) +  2, (46) 

where n/2 denotes integer division. 
Thus, for q > q,,: 

j~n q) -~ j~nAsymp). 
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Such a pat tern  is observed when normal  absorption is 
included, cf. §3.3. In the case of zero absorption,  the 
asymptotic behaviour  occurs already when 

qn = n. (47) 

In this case, the contribution from the pure Laue field, 
B-D, is different from zero. However ,  contributions 
f rom A - A ,  B -A  and A - D  scattering effectively cancel it 
out, leaving the asymptotic expression. 

We also find that the contribution from B-A scat- 
tering generally equals that f rom the A - D  scattering. 
This may qualitatively be explained by simple symmetry  
arguments:  When reversing the scattering process, the 
B - A  case represents  the A - D  case and vice versa. 
Fur thermore ,  the expansion coefficients f(q) do not 
depend on the pa ramete r  o, which merely labels two 
different integration schemes giving the same final 
result. 

The kinematical  limit is given by the zeroth-order  
expansion coefficientt  fro- Table 8 gives the analytical 
expressions for the various contributions to )Co in the 
zero-absorpt ion case. The different terms add to 1 for 
all (. Fig. 8 illustrates the functional dependence upon (. 
We notice that Laue transmission (B-D scattering) is 
dominant  when ( <  4/5 while Bragg reflection (A -A  
scattering) gives the main contribution when ( > 2. In 
the range 4/5 _< ( _< 2, the mixed scattering terms are 
the most important .  

By using equat ion (42), we are able to analytically 
calculate the series-expansion coefficients, ~q). The 
results up to n = 4 are shown in Fig. 9. The curves are 
all continuous over every interval specified by q, and 
are descending functions of (. Using equat ion (41), we 
find for the pr imary extinction factors~t for the first 
three ( ranges: 

y(q--O) z 1 -- (2/3)(2 -- ()s e + (4/45)(9 - 5 ( ) ~  2 - . . .  

(48) 

y(q=l) ._ 1 - -  ( 2 / 3 ( 3 ) ( - - 1  + 2 ( ) ~  + ( 4 / 4 5 ( 5 ) ( 1 0  - -  2 4 (  

+ 40(3 _ 30(4 + 9(5 _ ( 6 ) ~ 2  - . . .  (49) 

y(q=2) = 1 - (2/3(3)(--1 + 2()~: + (8 /45(5) ( -11  + 12()~ z 

- . . . .  (50) 

The series-expansion results have been used to verify 
and extend the extinction factor curves given by 
Olekhnovich & Olekhnovich (1978) for the special case 
of a square-cross-section crystal (Larsen,  1997). Within 
their domain of applicability, the agreement  with the 
present  t rea tment  seems to be exact. 

t When it is not explicitly necessary, we do not use the (q) label for 
the coefficients ~q). 
~t We reserve the symbol yp for the case when only multiple scattering 
is included in the calculation. For convenience, only results up to 
second order are shown. 

Table 8. Expansion coefficients fo for the various 
scattering processes 

Scattering ( _< 1 1 _< ( _< 2 ( >__ 2 

A-A (/4 (/4 1-1/( 
A-D = B-A (/4 1-1/2(-(/4 1/2( 
B-D 1-3(/4 -1+1/(+(/4 0 

Now consider only the Laue contribution (B-D) for 
q = 0. This is found to be 

y~pB-D) = [1 -- (3/4)(]  -- [4/3 -- (23/24)(]~ 

+ [4/5 -- (379/720)(]~ 2 

-- [16/63 -- (99/640)(]~ 3 + . . . .  (51) 

In the case of a semi-infinite crystal plate, l --+ e~ and 
hence ( --+ 0. Applying this condition to equat ion (51) 
and introducing a modified expansion parameter ,  ~/~, by 

~/~ or 

~L = (t /Aoh cos 0oh) 2, (52) 

we get the following series solution for the pr imary 

f0 
i 

A-A 

0.8 " "  

0.6 

0.4 

0.2 A-D + B-A 

\ . . . . . .  : 
2 4 6 8 I0 

Fig. 8. Contributions to the kinematical integrated power from the 
various scattering processes. 

f, 

1.21 

0.6 i 

0.4 

0.2 

( 
1 2 3 4 5 

Fig. 9. Series-expansion coefficients, ~q), as a function of ( for 
n = {1,2 ,3 ,4} . /z  = 0  and • = 0 .  
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( L a u e )  ex t inc t ion  factor:  

yp = 1 -- (1/3)~ L -+- (1/20)~ 2 -- (1 /252)~ .  + . . .  

---- ( 1 / ~ / 2 )  Z J2,,+1(2~/2) • (53) 
n 

This resul t  is iden t ica l  to the  well  k n o w n  express ion  for  
L a u e  t r ansmiss ion  in a pe r fec t  semi- inf in i te  crystal  p la te  
first de r i ved  by Z a c h a r i a s e n  (1945, 1967). 

T h e  pu re  Bragg  c o n t r i b u t i o n  ( A - A )  to  the  ex t inc t ion  
fac tor  in the  a sympto t i c  limit is: 

y(Asymp,A-A) = (--1 + ( ) / ( -  [2(--3 + 2()/3(31s e 

+ [ 8 ( - 2 3  + 1 2 0 / 4 5 ~ ] ~  2 

-- [32(--79 + 3 4 0 / 3 1 5 ( 7 ] ~  3 + . . . .  (54) 

R e d e f i n i n g  the  expans ion  coeff icient ,  

~B = 4~/ (2 = (l/ Aoh sin Ooh) 2, (55) 

and  using it in the  a p p r o p r i a t e  limit,  ( ~ cx~, we get  the  
fo l lowing  ser ies  so lu t ion  for  the  p r ima ry  e x t i n c t i o n  
factor:  

yp = 1 - (1/3)~ A + (2/15)~ 2 -- (17/315)~ 3 + . . .  

( t anh  1/2 1/2 = ~B ) / ~ ,  (56) 

3.2. Numerical results for the primary extinction factor 

By using e q u a t i o n  (13) t o g e t h e r  wi th  U r a g a m i ' s  
resul ts  for  the  b o u n d a r y - v a l u e  G r e e n  funct ions ,  cf. 
§2.4.2, we are  able  to p e r f o r m  n u m e r i c a l  i n t eg ra t ions  
giving the  p r i m a r y  ex t inc t ion  fac tor  for  a r ange  of  
d i f fe ren t  sca t te r ing  condi t ions .  In Figs. 11, 12 and  13, yp 
is p lo t t ed  as a func t ion  of  t/Aoh for  Ooh E (5 °, 30 °, 55 °) 
wi th  t / l  = 1/4  and  4. The  case of  Ooh = 5 °, t / l  = 1/4  is 
ve ry  close to the  ' pu re '  L a u e  s i tuat ion.  O n  the  o t h e r  

Yp 

1 

0.8 

0.6 

0.4 

0.2 , , .__ .-  

. . . .  ~ . . . . . . .  t 

2 4 6 8 10 An 

Fig. 11. Primary extinction factor for Ooh = 5 ° as a function of t/Aoh. 
Solid line: t/l = 4, dashed line: t/l = 1/4. 

wh ich  is the  famil iar  express ion  for  a symmet r i ca l  Bragg  
re f lec t ion  in a semi- inf in i te  crystal  (Da rwin ,  1922; 
Z a c h a r i a s e n ,  1945). 

T h e  expans ion  for  the  p r i m a r y  ex t inc t ion  factor ,  
e q u a t i o n  (41), is a s lowly c o n v e r g e n t  series. This is 
i l lus t ra ted  in Fig. 10 w h e r e  the  u p p e r  limit in ~, cor re -  
s p o n d i n g  to an u p p e r  b o u n d  in the  abso lu te  e r r o r  in the  
ca l cu la t ed  ex t inc t ion  fac tor  of  10 -4, is s h o w n  as a 
func t ion  of  (. A ser ies  expans ion  inc lud ing  the  t en th -  
o r d e r  t e rm  is u sed  in this ca lcu la t ion .  A l t h o u g h  bo th  
and  ( are  func t ions  of  t, l and  Ooh, which  r ende r s  s o m e  
d e g r e e s  of  f r e e d o m ,  it is c lear  tha t  n u m e r i c a l  m e t h o d s  
are  neces sa ry  to inc rease  the  po ten t i a l  of  ou r  app roach .  

2 4 6 8 10 

Fig. 10. Limiting value of the expansion parameter ~ as a function of 
the parameter (. Actual values of ~ should stay below the limiting 
curve to keep the absolute error in the calculation of the extinction 
factor within 1 0  - 4  . Ten terms are used in the series expansion. 

Yp 
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0.6 

0.4 

0.2 ,, . . . . .  " ' - ,  
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2 4 6 8 10 Aoh 

Fig. 12. Primary extinction factor for Ooh = 30 ° as a function of t/Aoh. 
Solid line: t/l = 4, dashed line: t/l = 1/4. 

Yp 
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0.4 ' 

0.2 - 

2 4 6 8 10 Aoh 

Fig. 13. Primary extinction factor for Ooh = 55 ° as a function of t/Aoh. 
Solid line: t/l = 4, dashed line: t/l = 1/4. 
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hand, the case of Ooh--55 ° , t / l - - 4  is close to the 
'pure' Bragg s i tuation,  as is s h o w n  in Fig. 14. W h e n  
( <  0.02,  the funct ion  (53) approx imates  the true 

O extinction factor with an error .,. 5 '/o, while for ( > 6 
o the function (56) gives results ..~8 70 from the true 

values. 

3.3. Absorption 

By taking photoelectric absorption into account 
through the d i m e n s i o n l e s s  parameter  #0 def ined  in 
equation (14), we find expressions for the normal 
absorption factor A using equation (45). We obtain: 
f o r q = 0 ( 0 < ( < l ) :  

A = [ - 1  + e x p ( 2 / z 0 0  -- 4 # 0 (  + 2#0ff e x p ( 2 / x 0 0  + 8/x~( 

- 6U02(2]/S/z~( exp(2~,o0; (57) 

f o r q = l  ( 1 _ < ( _ < 2 ) :  

A -- 1/(exp(2/Zo() + 1 /8#~;  - 1 /2#2(exp(2/z  o) 

+ 3/8#20(exp(2u00 - 1//z0(exp(2/z0() 

- 1/exp(2/z00 + 1/4/x0 + 1/2#0 exp(2#0() 

+ ( / 4  exp(2/z00. (58) 

The asymptot ic  reg ime  for n = 0 occurs, according to 
equation (46), when q = 2. Thus, equation (59) covers 
the whole range ( >__ 2. 

A = [3 - 4 exp(2/z0) + exp(4#0) + 4/1. 0 

- 2#0 ( + 2#0 ( exp(4#0)]/8#02(exp(n/z0). (59) 

Considering a semi-infinite crystal, we obtain expres- 
sions identical to those found in the literature (Maslen, 
1995). Fig. 15 shows the absorption factor as a function 
of ( with #0 as parameter. 

The results given by equations (57)-(59) might serve 
as checkpoints for the algorithms used for absorption 
correct ion in crystal lographic  comput ing ,  cf. Hal l  e t  al. 

(1995). 
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Fig. 14. Comparison of the calculated primary extinction factor for 
Ooh = 55 ° and t / l  = 4 (dashed line) with the Bragg curve (solid 
line) from the fundamental theory, both as functions of l/Aoh. 

3.4. Generalized extinction factor 

The c o m b i n e d  at tenuat ion  effect  from both  normal  
absorpt ion and mul t ip le  scattering is taken  into account  
when calculating the generalized extinction factor y. In 
Fig. 16, we have compared the generalized extinction 
factor y with yp × A. It is seen that for the transmission 
case, Ooh = 0 °, the curves overlap. This is because all 
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Fig .  15.  A b s o r p t i o n  f a c t o r  as  a f u n c t i o n  o f  (. (a)  /z 0 = 0.1, (b) 

Iz 0 = 0.3, ( c ) / z  0 = 0.6 and  ( d ) / z  0 = 1.5. 

y, y p X A  
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y, ypxA 
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0.4 

0.2 
............. 

t . . . . . .  
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(b) 

Fig. 16. Comparison between the generalized extinction factor, y, 
(solid line) and the product yp x A (dashed line) for a square- 
cross-section ( t / l  = 1) crystal. Case (a) is calculated for Ooh = 0 ° 
and case (b) for Ooh = 45 °. The absorption factor is chosen such 
t h a t  ~Aoh = 0.5. 
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scattering routes will have the same effective path 
length. For Ooh > 0 °, this is not the case. Here the 
contributions do not factorize and y > yp × A for every 
t/Aoh. 

In structural analysis, the factorization scheme is 
adopted in the data reduction but one tries to bypass 
the above problem by using absorption-weighted mean 
free path lengths in a refinement of the extinction 
factor, cf. Becker & Coppens (1974a,b, 1975). 

Anomalous scattering may also be included in the 
generalized extinction factor through the phase angle 
• , equation (7), and by using amplitude-corrected 
structure factors (knowing f '  and f")  in the calculation 
of the extinction length, Aoh, equation (8). In a model 
study on small germanium crystals, we have used the 
present formalism combined with the anomalous scat- 
tering factors calculated by Kissel and co-workers 
(Kissel et al., 1995) to investigate the generalized 
extinction factor as a function of the wavelength of the 
incident radiation. An example for the moderately 

_ _  

strong 131 reflection is shown in Fig. 17. ~ i 5 1 ( ~ )  and 
Ai~l(~.  ) a r e  given in Figs. 18 and 19. The prominent 
feature of the set of curves in Fig. 17 is the photoelectric 
K threshold apparent at ~. "~ 1.1211 ,~. We observe that 
the extinction factors approach unity (i.e. the kinema- 
tical limit) when ~. ~ 0. As the wavelength increases, 
the extinction curves decrease smoothly towards the 
photoelectric threshold. A more rapid decrease is 
observed as the crystal dimension increases. At the 
threshold, resonant scattering is of great importance. 
However, the theory for calculating f '  and f"  is not 
capable of adequately describing resonance effects that 
take place here, leading to unreliable values in the 
correction terms (Kissel et al., 1995; Cromer & 
Liberman, 1970). 

Finally, at the low-energy side of the threshold, the 
attenuation is of course reduced owing to the reduction 
of the photoelectric absorption coefficient, but the 
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Fig. 17. Generalized extinction factor as a function of wavelength 
), (/k) for crystal dimensions {a, b, c, d, e} = {2, 4, 6, 8, 10} lam. 
Germanium, reflection i31; square-cross-section crystal geometry 
(t/! = 1). 

extinction factor curves continue to decrease as the 
wavelength increases. It is however interesting to note 
the different rates at which the curves decline. The 
effect of crystal dimension is important, and at the two 
highest values, t = {8, 10} ~tm, the curves tend to flatten 
out. It has been found (Larsen, 1997) that for stronger 
reflections the generalized extinction factors show an 
oscillating behaviour as a function of ~. for low energies. 

4. Conclusions 

The boundary-value Green function technique com- 
bined with the Takagi-Taupin equations comprises a 
powerful tool in handling dynamical X-ray scattering in 
finite crystals. We have shown how to obtain general- 
ized extinction factors for a rectangular t x I crystal 
geometry. The analytical calculations confirm the find- 
ings from standard plane-wave fundamental theory in 
the limit of a semi-infinite crystal plate. A key to the 
success of the method is its easy implementation in a 
symbolic software system such as Mathematica. This 
enables us to perform series expansions in principle to 
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Fig. 18. The phase sum • (°) as a function of the wavelength ~. (~,) for _ _  
the 131 reflection in germanium. 
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Fig. 19. The extinction length Aoh (lam) as a function of the 
wavelength ~. (~,) for the i31 reflection in germanium. 
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Table 9. Coordinates  f o r  a po in t  M on an exit surface in relation to a source po in t  S 

Surfaces Ao Ah 

A - A  (1/2 cos Ooh)[ro(M ) -- to(S)] (1/2 cos Ooh)[ro(M ) -- ro(S)] 
A - D  (1/2COSOoh)[t -- ro(S)] + ( 1 / 2 s i n O o h ) r l ( M )  (1/2COSOoh)[t -- to(S)  ] - ( 1 / 2 s i n O o h ) r l ( M )  
B - A  (1/2 cos Ooh)ro( M ) -- (1/2 sin Ooh )r I ( S)  (1/2 cos O,,h)ro( M ) + (1/2 sin Ooh)r I ( S)  
B - D  (1/2COSOoh)t + (1 /2 s inOoh) [ r l (M)  -- rl(S) ] (1/2COSOoh)t -- ( 1 /2 s inOoh) [ r l (M)  -- rl(S)] 

Table 10. Change  o f  variables - definit ions 

Surfaces Ent rance  Exit 

A - A  ro(S ) = ro(M ) - 2 c o s  OohX ro(M) = 2 cos OohY 
A - D  ro(S ) = t - [ r l ( M ) /  tanOoh ] -- 2COSOohX r l ( M  ) = 2sinOohY 
B-A r 1 (S) = 2 sin O,,hX -- ro(M) tan 0,, h ro(M) = 2 cos OohY 
B-D r I (S) = 2 sin OohX + r I (M) -- t tan Ooh r I (M) = 2 sin OohY 

any order. However,  for higher-order terms, the calcu- 
lations become very complex and time and memory  
consuming, and numerical  methods become necessary. 

The extension of this work to the case of non- 
symmetrical scattering, which increases the geometrical  
complexity of the problem, will be the subject of a 
for thcoming paper, cf. Thorki ldsen & Larsen (1997). 

A P P E N D I X  A 
A1.  Coordinate  sys tems 

With the origin of the local coordinate  system on the 
entrance surface A, the relat ion between the local 
(s o, Sh) and global (r 0, rl) coordinates for a general point  
within the crystal is given by 

s o = (1/2cOSOoh)[r o -- r0(S)] -k- (1/2sinOoh)r  I 
(60) 

S h = (1/2 c o s  Ooh)[r  0 - -  r0 (S ) ]  - -  (1/2 sin Ooh)r  1 . 

With the origin of the local coordinate  system on the 
entrance surface B, the relat ion between the local and 
global coordinates  for a general point  is given by 

s o -- (1/2cOSOoh)r o + (1/2sinOoh)[rl -- rl(S)] 
(61) 

s h = (1/2 cos Ooh)rO -- (1/2 sin Ooh)[r 1 -- rl(S)]. 

A2.  Coordinates  f o r  an exit po in t  M 

It is convenient  to represent  an exit point M in the 
(r0, rl) coordinate  system. On exit surface A, 
ro(M ) ~ (0, t) and r l ( M  ) = 0, while, on exit surface D, 
ro(M ) -- t and r l (M ) ~ (0, l). The coordinates for an exit 
point  with respect to the appropria te  source point,  i.e. 
A o and A h, are given in Table 9. 

A3.  Def ini t ion o f  new  variables 

The surface integrations are simplified by introducing 
a set of variables, (x, y), with somewhat  different defi- 
nitions according to the actual combinat ion of entrance 
and exit surfaces. The definitions are given in Table 10. 
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